The complex Monge–Ampère equation with a gradient term

نویسندگان

چکیده

We consider the complex Monge-Amp\`ere equation with an additional linear gradient term inside determinant. prove existence and uniqueness of solutions to this on compact Hermitian manifolds.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The geometric properties of a degenerate parabolic equation with periodic source term

In this paper, we discuss the geometric properties of solution and lower bound estimate of ∆um−1 of the Cauchy problem for a degenerate parabolic equation with periodic source term ut =∆um+ upsint. Our objective is to show that: (1)with continuous variation of time t, the surface ϕ = [u(x,t)]mδq is a complete Riemannian manifold floating in space RN+1and is tangent to the space RN at ∂H0(t); (2...

متن کامل

Bounded solutions to the 1-Laplacian equation with a critical gradient term

In this paper, we study the Dirichlet problem for an elliptic equation, in which the 1–Laplacian operator and a first order term appear. We introduce a suitable definition of solution and prove the existence of, at least, one bounded solution in BV (Ω) having no jump part. Moreover, a uniqueness result for small positive data is proved, and explicit examples of solutions are shown.

متن کامل

Global Existence and Blowup of Solutions for a Parabolic Equation with a Gradient Term

The author discusses the semilinear parabolic equation ut = ∆u+ f(u) + g(u)|∇u|2 with u|∂Ω = 0, u(x, 0) = φ(x). Under suitable assumptions on f and g, he proves that, if 0 ≤ φ ≤ λψ with λ < 1, then the solutions are global, while if φ ≥ λψ with λ > 1, then the solutions blow up in a finite time, where ψ is a positive solution of ∆ψ + f(ψ) + g(ψ)|∇ψ|2 = 0, with ψ|∂Ω = 0. We study the solutions o...

متن کامل

Asymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term

This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.

متن کامل

The Asymptotic Behavior of a Doubly Nonlinear Parabolic Equation with a Absorption Term Related to the Gradient

its theory is well known, among its features we find C∞ smoothness of solutions, infinite speed of propagation of disturbances and the strong maximum principle. These properties are able to be generalized to a number of related evolution equations, notably those which are linear and uniformly parabolic. Other wellknown examples of (1) include the porous medium equation ut = △u, m > 1, (4) and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure and Applied Mathematics Quarterly

سال: 2021

ISSN: ['1558-8599', '1558-8602']

DOI: https://doi.org/10.4310/pamq.2021.v17.n3.a7